
REPORT
FOXG1 Is Responsible
for the Congenital Variant
of Rett Syndrome

Francesca Ariani,1 Giuseppe Hayek,2 Dalila Rondinella,1 Rosangela Artuso,1

Maria Antonietta Mencarelli,1 Ariele Spanhol-Rosseto,1 Marzia Pollazzon,1 Sabrina Buoni,2

Ottavia Spiga,3 Sara Ricciardi,4 Ilaria Meloni,1 Ilaria Longo,1 Francesca Mari,1 Vania Broccoli,4

Michele Zappella,2 and Alessandra Renieri1,*

Rett syndrome is a severe neurodevelopmental disease caused by mutations in the X-linked gene encoding for the methyl-CpG-binding

protein MeCP2. Here, we report the identification of FOXG1-truncating mutations in two patients affected by the congenital variant of

Rett syndrome. FOXG1 encodes a brain-specific transcriptional repressor that is essential for early development of the telencephalon.

Molecular analysis revealed that Foxg1 might also share common molecular mechanisms with MeCP2 during neuronal development,

exhibiting partially overlapping expression domain in postnatal cortex and neuronal subnuclear localization.
In the classic form of Rett syndrome (RTT [MIM 312750]),

females are heterozygous for mutations in the X-linked

MECP2 gene (MIM 300005) and the few reported males

have an XXY karyotype or MECP2 mutations in a mosaic

state.1 A number of variants have been described including

the congenital, the early-onset seizures, and the preserved

speech variant.2 Soon after the discovery of MECP2 as the

RTT gene, we demonstrated that the preserved speech var-

iant is allelic to the classic form.3 More recently, we and

others showed that CDKL5 (MIM 300203) is responsible

for atypical RTT, namely the early-onset seizures variant.4,5

The congenital variant was initially described by Rolando

in 1985.6 In this form, girls are floppy and retarded from

the very first months of life. The majority of congenital

variants do not bear MECP2 or CDKL5 mutations,7,8 with

only four cases being reported with MECP2 mutations.9–11

Using oligo array CGH, we recently identified a de novo

3 Mb interstitial deletion of chromosome 14q12 in a 7

year-old girl.12 She showed dysmorphic features and

a Rett-like clinical course, including normal perinatal pe-

riod, postnatal microcephaly, seizures, and severe mental

retardation. The deleted region was gene poor and con-

tained only five genes. Among them, FOXG1 (MIM

164874) turned out to be a very interesting gene because

it encodes a brain-specific transcriptional repressor. We an-

alyzed this gene with a combination of both DHPLC and

real-time quantitative PCR in a cohort of 53 MECP2/

CDKL5 mutation-negative RTT patients, including seven

classic, 21 preserved speech, seven early-onset seizures,

one ‘‘forme fruste,’’ two congenital variants and 15 Rett-

like cases.13 For real-time qPCR analysis, we designed

primers and TaqMan probe complementary to a segment

located in the middle of the single exon of the gene using

Primer Express software (Applied Biosystems). Sequences

of primers and probe (FAM labeled) are listed in Table S1

available online. We used an RNAase P kit as an internal

reference (VIC-labeled probe, Applied Biosystems). PCR

was carried out as previously described.14 The starting

copy number of the unknown samples was determined

with the comparative Ct method, as reported by Livak.15

By DHPLC, we identified a different de novo FOXG1 trun-

cating mutation in the two congenital variant patients.

Real-time qPCR failed to identify any microdeletion in

the 53 patients.

FOXG1 encodes forkhead box protein G1, FoxG1 (for-

merly brain factor 1 [BF-1]), a transcriptional factor with

expression restricted to fetal and adult brain and testis.

FoxG1 interacts with the transcriptional repressor JARID1B

and with global transcriptional corepressors of the Grou-

cho family. The interaction with these proteins is of func-

tional importance for early brain development.16,17 Like

MeCP2, FoxG1 also indirectly associates with the histone

deacetylase 1 protein.1,17 Both mutations disrupted the

protein at different levels (Figure 1). In case 1, a stop-codon

mutation p.W255X (c.765G/A) impaired the DNA bind-

ing because of the disruption of the forkhead domain

(Figure 1D, left). Case 2 showed a 1 bp deletion c.969

delC (p.S323fsX325) causing the loss of JARID1B-interact-

ing domain and the misfolding of the motif responsible for

the Groucho binding (Figure 1D, right). Lastly, both

FOXG1 mutations affected all the four brain fetal isoforms

that lack the last 37 amino acids and have different C-ter-

minal domains.18

The two mutated individuals, aged 22 (case 1) and 7

years (case 2), fulfilled the international criteria for RTT

variants.19 Pregnancy, delivery, and auxological parame-

ters at birth were normal. Neurological and behavioral neo-

natal evaluations were reported as normal, but at three
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Figure 1. FOXG1 Mutations and Alterations of the Functional
Domains
(A) Sequence tracing of FOXG1 mutations in the two patients.
Mutated bases are indicated above the line.
(B) Schematic representation of FoxG1 protein. The three main
functional domains are shown: the DNA binding fork-head domain
in light blue (FHD), the Groucho-binding domain in violet (GTBD),
and the JARID1B binding domain in red (JBD). The numbers at the
top refer to the amino acid positions. Mutations are indicated by
zigzag lines.
(C and D) Ribbon representation of the tertiary structure obtained
with Phyre v.0.2 software. (C) shows the structure of the region
containing the three functional domains of wild-type protein
(amino acids 180–489). Arrows highlight the two mutations. The
FHD domain (cyan) consists of three alpha helices and one beta
hairpin (two beta strands and one loop), whereas the GTBD (violet)
and JBD (red) domains are random coiled. (D) shows structural
modification after p.W255X (left) and p.S323fsX325 (right) muta-
tions. The p.W255X mutation determines a protein truncation just
after the second beta strand leading to the loss of the beta hairpin
and thus preventing DNA binding. The p.S323fsX325 mutation
leaves the FHD domain intact and truncates the protein just
after GTBD, inducing conformational changes that lead to its
misfolding.
90 The American Journal of Human Genetics 83, 89–93, July 2008
months, an abnormal head-circumference growing was

noticed in the patients. These patients appeared to weep

inconsolably, and they did not respond when called and

were unable to lift their heads. Case 1 was never able to

sit unaided and laid permanently in bed, whereas case 2

was barely able to sit. They were always apraxic and from

1 year of age, they showed peculiar jerky movements of

the upper limbs and midline stereotypic activities, typical

of RTT syndrome (Figure 2). They never acquired spoken

language. Generalized convulsions appeared at 14 years

in case 1 and at 2 1/2 years in case 2. Ever since cases 1

and 2 were 3 and 5 years old, respectively, an EEG showed

features often found in RTT patients: a multifocal pattern

with spikes and sharp waves and occasional paroxysmal

activity. In both patients brain MRI showed corpus cal-

losum hypoplasia, a finding which has already been re-

ported in RTT.20 Currently, they show microcephaly

(OFC of 49 cm in case 1, and 47 cm in case 2). They have

occasional periods of deep breathing with exaggerated in-

spirations. Sialorrhoea, bruxism, scoliosis, and cold lower

extremities as well as stypsis are present in both patients

who are currently fed by mouth.

These two girls show neurological and neurovegetative

symptoms as well as somatic features consistent with a di-

agnosis of congenital RTT variant. It should only be noted

that a retrospective assessment concerning the possible

presence of a regression was not feasible. We attempted

to compare their phenotype with the four other MECP2-

mutated girls described as congenital variants.9–11 How-

ever, they have been reported with very little detail,

thereby hampering a posteriori clinical re-evaluation ac-

cording to the revised criteria.19 According to the new cri-

teria, in the classic form, psychomotor development may

have been delayed from birth; thus, a re-evaluation of

these four patients would have lead to their reclassification

as classic form. Alternatively, the disruption of either

MeCP2 or FoxG1 may lead to a phenotype, namely the

congenital variant, indistinguishable at the level of the

clinical and instrumental investigations performed.

A translocation with inversion affecting fetal isoforms of

FOXG1 was recently described in a 7-year-old girl.18 She

had acquired microcephaly, alalia, inability to sit and

walk, and epilepsy in common with the present cases. Cor-

pus callosum was absent, whereas in our cases, it was hypo-

plasic. Stereotypic hand activities were not mentioned,

and tetraplegia was described.18 The clinical features of

this patient have something in common with a RTT phe-

notype. The impairment of only fetal FOXG1 isoforms

and the possible contribution of genes at the other two

breakpoints of the complex rearrangement might explain

the phenotypic differences.

The mouse ortholog Foxg1 has a restricted expression

domain in the central nervous system coinciding with

the emergence of the telencephalic structures of the brain.

Its function has been extensively characterized and found

to promote telencephalon development by sustaining

proliferation of the progenitor pool and preventing



Figure 2. Pictures of the Two Congeni-
tal RTT Patients
Case 1 (#156) is shown on the left; case 2
(#868) is shown on the right. They show
peculiar jerky movements of the upper
limbs frequently pushed in different direc-
tions accompanied by continuous flexion-
extension, wringing movements of the fin-
gers of the hands. The hands were brought
together in hand-washing and hand-mouth
stereotypic activities, which were intense
and present all the time they were awake.
Similar flexion-extension movements of
the toes were noticed in the feet. The dou-
ble scoliosis of case 1 is clearly evident,
whereas the other girl maintained a
straight vertebral column as often occurs
in RTT in the first decade. Teeth grinding
was present, and the tongue often pro-
truded out from the mouth.
premature cortical neural differentiation.21,22 In agree-

ment, FoxG1 expression is found in the proliferating neu-

roepithelium starting from early development onward.23

This expression profile might explain the particular early

onset of the neurological symptoms displayed by the

patients.

Despite its early expression in telencephalon develop-

ment, in this study we found that Foxg1 expression is de-

tectable in the differentiating cortical compartment in

the postnatal stages, although at lower levels with respect

to the early embryonic phases (Figure 3A). This expression

profile overlaps with the described MeCP2 expression

Figure 3. FoxG1 and MeCP2 Expression
Domain in Postnatal Cortex and Neuronal
Subnuclear Localization
(A and B) Expression analysis by in situ hy-
bridization of Foxg1 and MeCP2 on P8 post-
natal forebrain tissue. As shown in (A),
Foxg1 expression is found in differentiat-
ing and mature cortical neurons in the de-
finitive cortical plate (indicated by arrows
in [A]) similar to the MeCP2 expression
pattern (indicated by arrows in [B]). In
(A0), the inset shows background staining
with a sense cRNA for Foxg1 in the same
in situ hybridization conditions used for
(A) and (B).
(C–J) FoxG1 and MeCP2 sub-cellular locali-
zation in non-neural and primary neurons.
As shown in (C)–(F), in NIH 3T3 cells,
MeCP2-GFP exogenous protein has a diffuse
nuclear localization with accumulation in
the heterochromatic foci (indicated by ar-
rows in [D]) as identified when compared
with DAPI staining (indicated by arrows
in [C]). (E) and (F) show that conversely,
FoxG1-flag exogenous protein displays
a widespread nuclear localization without
enrichment in heterochromatic sites. (G)–
(J) show FoxG1 and MeCP2 localization in

12DIV (days in vitro) primary hippocampal neurons. In (G), MeCP2 endogenous protein is accumulated in heterochromatic foci (indicated
by arrows). As shown in (H), FoxG1-flag exogenous nuclear localization is excluded from heterochromatic puncta (indicated by arrow-
heads). As shown in (I), MeCP2 and FoxG1-flag colocalize in the nuclear compartment outside the heterochromatic foci. As shown in
(J), Nuclear FoxG1-flag localization is detected in a differentiated b-III-tubulin-positive neuron. The following abbreviations are
used: cx, cerebral cortex; se, septum; str, striatum; and v, ventricle.
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domain in cortical tissues, in differentiating and mature

neurons (Figures 3A and 3B). Foxg1 homozygote-mutant

mice die shortly after birth with severe brain defects.24–26

Unfortunately, the severe compromised development of

Foxg1 mutant telencephali has prevented the analysis of

its function in more differentiated neurons. At the single-

cell level, FoxG1 localizes in the nuclear compartment

but is excluded from the MeCP2-positive heterochromatic

foci both in nonneural and primary neurons (Figures 3C–

3J). These findings suggest that, differently from MeCP2,

FoxG1 is not a transcriptional repressor stably associated

with heterochromatin. However, both proteins have a large

colocalization domain in other nuclear compartments

(Figure 3I).

Overall, these data suggest that FoxG1 may exert some

additional functions in differentiating and mature neu-

rons, thus sharing similarities with those described for

MeCP2. These findings may provide some biological

evidence for the development of similar clinical manifesta-

tions in disorders affecting the two genes. However, it is

also possible that the two transcriptional regulators act

on different stages of the process that leads to proper corti-

cal development, from early cell-fate decisions to later cir-

cuit connectivity and dendritic development.

FoxG1 shares some interesting analogies with MeCP2 in

its molecular functions, raising the question whether the

two protein networks may interact in some circumstances

and on selective common targets. Future studies will ad-

dress this intriguing hypothesis. Recently, heterozygous

Foxg1þ/� mice were found to display subtler defects in-

cluding a reduction in size of the corpus callosum to-

gether with specific patterning defects.25,27 Furthermore,

heterozygous Foxg1þ/� exhibit learning deficits based on

fear-condition behavioral tests associated with a loss of

postnatal neurogenesis in the hippocampus.27 These

mice represent a very interesting animal model for further

investigation about how Foxg1 haploinsufficiency may

impact on brain development and neuronal maturation

and function.

In conclusion, we demonstrated that FOXG1 is a previ-

ously unrecognized gene responsible for variant Rett syn-

drome. It is worth noting that in the revised criteria for

Rett syndrome the female sex is no longer present as inclu-

sion criteria.19 This seemed to open the door to the discov-

ery of an autosomal gene.

Supplemental Data

One table listing primers and probes for real-time qPCR is available

at http://www.ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

Italian Rett database and biobank, http://www.biobank.unisi.it/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

References

1. Chahrour, M., and Zoghbi, H.Y. (2007). The story of Rett syn-

drome: from clinic to neurobiology. Neuron 56, 422–437.

2. Hagberg, B.A., and Skjeldal, O.H. (1994). Rett variants: A

suggested model for inclusion criteria. Pediatr. Neurol. 11,

5–11.

3. De Bona, C., Zappella, M., Hayek, G., Meloni, I., Vitelli, F.,

Bruttini, M., Cusano, R., Loffredo, P., Longo, I., and Renieri,

A. (2000). Preserved speech variant is allelic of classic Rett syn-

drome. Eur. J. Hum. Genet. 8, 325–330.

4. Tao, J., Van Esch, H., Hagedorn-Greiwe, M., Hoffmann, K.,

Moser, B., Raynaud, M., Sperner, J., Fryns, J., Schwinger, E.,

Gecz, J., et al. (2004). Mutations in the X-linked cyclin-depen-

dent kinase-like 5 (CDKL5/STK9) gene are associated with se-

vere neurodevelopmental retardation. Am. J. Hum. Genet.

75, 1149–1154.

5. Scala, E., Ariani, F., Mari, F., Caselli, R., Pescucci, C., Longo, I.,

Meloni, I., Giachino, D., Bruttini, M., Hayek, G., et al. (2005).

CDKL5/STK9 is mutated in Rett syndrome variant with infan-

tile spasms. J. Med. Genet. 42, 103–107.

6. Rolando, S. (1985). Rett syndrome: report of eight cases. Brain

Dev. 7, 290–296.

7. Erlandson, A., Samuelsson, L., Hagberg, B., Kyllerman, M.,

Vujic, M., and Wahlstrom, J. (2003). Multiplex ligation-depen-

dent probe amplification (MLPA) detects large deletions in the

MECP2 gene of Swedish Rett syndrome patients. Genet. Test.

7, 329–332.

8. Scala, E., Longo, I., Ottimo, F., Speciale, C., Sampieri, K., Kat-

zaki, E., Artuso, R., Mencarelli, M.A., D’Ambrogio, T., Vonella,

G., et al. (2007). MECP2 deletions and genotype-phenotype

correlation in Rett syndrome. Am. J. Med. Genet. A. 143,

2775–2784.

9. Huppke, P., Laccone, F., Kramer, N., Engel, W., and Hanefeld, F.

(2000). Rett syndrome: Analysis of MECP2 and clinical charac-

terization of 31 patients. Hum. Mol. Genet. 9, 1369–1375.

10. Monros, E., Armstrong, J., Aibar, E., Poo, P., Canos, I., and

Pineda, M. (2001). Rett syndrome in Spain: Mutation analysis

and clinical correlations. Brain Dev. Suppl. 1, S251–S253.

11. Smeets, E., Schollen, E., Moog, U., Matthijs, G., Herbergs, J.,

Smeets, H., Curfs, L., Schrander-Stumpel, C., and Fryns, J.P.

(2003). Rett syndrome in adolescent and adult females: Clini-

cal and molecular genetic findings. Am. J. Med. Genet. A. 122,

227–233.

12. Papa, F.T., Mencarelli, M.A., Caselli, R., Katzaki, E., Sahpieri,

K., Meloni, I., Ariani, F., Longo, I., Maggio, A., Balestri, P.,

et al. (2008). A 3 Mb deletion in 14912 causes severe mental

retardation, mild facial dysmorphisms and Rett-like features.

Am. J. Med. Genet. A., in press.

http://www.ajhg.org/
http://www.biobank.unisi.it/
http://www.ncbi.nlm.nih.gov/Omim/
http://www.ncbi.nlm.nih.gov/Omim/


13. Sampieri, K., Meloni, I., Scala, E., Ariani, F., Caselli, R., Pes-

cucci, C., Longo, I., Artuso, R., Bruttini, M., Mencarelli,

M.A., et al. (2007). Italian Rett database and biobank. Hum.

Mutat. 28, 329–335.

14. Ariani, F., Mari, F., Pescucci, C., Longo, I., Bruttini, M., Meloni,

I., Hayek, G., Rocchi, R., Zappella, M., and Renieri, A. (2004).

Real-time quantitative PCR as a routine method for screening

large rearrangements in Rett syndrome: Report of one case of

MECP2 deletion and one case of MECP2 duplication. Hum.

Mutat. 24, 172–177.

15. Livak, K. (1997). ABI Prism 7700 Sequence Detection System.

16. Tan, K., Shaw, A.L., Madsen, B., Jensen, K., Taylor-Papadimi-

triou, J., and Freemont, P.S. (2003). Human PLU-1 Has tran-

scriptional repression properties and interacts with the devel-

opmental transcription factors BF-1 and PAX9. J. Biol. Chem.

278, 20507–20513.

17. Yao, J., Lai, E., and Stifani, S. (2001). The winged-helix protein

brain factor 1 interacts with groucho and hes proteins to re-

press transcription. Mol. Cell. Biol. 21, 1962–1972.

18. Shoichet, S.A., Kunde, S.A., Viertel, P., Schell-Apacik, C., von

Voss, H., Tommerup, N., Ropers, H.H., and Kalscheuer, V.M.

(2005). Haploinsufficiency of novel FOXG1B variants in a pa-

tient with severe mental retardation, brain malformations and

microcephaly. Hum. Genet. 117, 536–544.

19. Hagberg, B., Hanefeld, F., Percy, A., and Skjeldal, O. (2002). An

update on clinically applicable diagnostic criteria in Rett syn-

drome. Comments to Rett Syndrome Clinical Criteria Consen-

sus Panel Satellite to European Paediatric Neurology Society

Meeting, Baden Baden, Germany, 11 September 2001. Eur. J.

Paediatr. Neurol. 6, 293–297.

20. Murakami, J.W., Courchesne, E., Haas, R.H., Press, G.A., and

Yeung-Courchesne, R. (1992). Cerebellar and cerebral abnor-
malities in Rett syndrome: a quantitative MR analysis. AJR

Am. J. Roentgenol. 159, 177–183.

21. Hanashima, C., Shen, L., Li, S.C., and Lai, E. (2002). Brain fac-

tor-1 controls the proliferation and differentiation of neocor-

tical progenitor cells through independent mechanisms. J.

Neurosci. 22, 6526–6536.

22. Seoane, J., Le, H.V., Shen, L., Anderson, S.A., and Massague, J.

(2004). Integration of Smad and forkhead pathways in the

control of neuroepithelial and glioblastoma cell proliferation.

Cell 117, 211–223.

23. Tao, W., and Lai, E. (1992). Telencephalon-restricted ex-

pression of BF-1, a new member of the HNF-3/fork head

gene family, in the developing rat brain. Neuron 8, 957–

966.

24. Martynoga, B., Morrison, H., Price, D.J., and Mason, J.O.

(2005). Foxg1 is required for specification of ventral telen-

cephalon and region-specific regulation of dorsal telence-

phalic precursor proliferation and apoptosis. Dev. Biol. 283,

113–127.

25. Xuan, S., Baptista, C.A., Balas, G., Tao, W., Soares, V.C., and

Lai, E. (1995). Winged helix transcription factor BF-1 is essen-

tial for the development of the cerebral hemispheres. Neuron

14, 1141–1152.

26. Hanashima, C., Fernandes, M., Hebert, J.M., and Fishell, G.

(2007). The role of Foxg1 and dorsal midline signaling in

the generation of Cajal-Retzius subtypes. J. Neurosci. 27,

11103–11111.

27. Shen, Q., Wang, Y., Dimos, J.T., Fasano, C.A., Phoenix, T.N.,

Lemischka, I.R., Ivanova, N.B., Stifani, S., Morrisey, E.E., and

Temple, S. (2006). The timing of cortical neurogenesis is

encoded within lineages of individual progenitor cells. Nat.

Neurosci. 9, 743–751.
The American Journal of Human Genetics 83, 89–93, July 2008 93


	FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome
	Acknowledgments
	Web Resources
	References


